A Characterization of Groups Whose Lattices of Subgroups are n-M_{n+1} Chains for All Primes p

Chawewan Ratanaprasert

Department of Mathematics, Faculty of Science, Silpakorn University, Nakorn Pathom, Thailand Corresponding author. E-mail address: ratach@su.ac.th

Received December 23, 2008; Accepted October 16, 2009

Abstract

Whitman, P.M. and Birkhoff, G. answered a well-known open question that for each lattice L there exists a group G such that L can be embedded into the lattice Sub(G) of all subgroups of G. Gratzer, G. has characterized that G is a finite cyclic group if and only if Sub(G) is a finite distributive lattice. Ratanaprasert, C. and Chantasartrassmee, A. extended a similar result to a subclass of modular lattices M_m by characterizing all integers $m \ge 3$ such that there exists a group G whose Sub(G) is isomorphic to M_m and also have characterized all groups G whose Sub(G) is isomorphic to M_m for some integers m. On the other hand, a very well-known open question in Group Theory asked for the number of all subgroups of a group. In this paper, we consider the extension of the subclass M_m for all integers $m \ge 3$ of modular lattices, the class of $n-M_{p+1}$ chains for all primes p, and all $n \ge 1$ and characterized all groups G whose Sub(G) is an $n-M_{p+1}$ chain if and only if G is an abelian p-group of the form $Z_{p^*} \times Z_p$. Moreover, we can tell numbers of all subgroups of order p_i for each $1 \le i \le n$ of the special class of p-groups.

Key Words: Modular lattice; Lattice of subgroups; p-group

Introduction

A lattice L is a non-empty ordered set in which each pair of elements a, b of L has the least upper bound denoted by a \lor b and the greatest lower bound denoted by a \land b. Whitman, P.M. (1946) proved that for each lattice L there exists a set X such that L can be embedded into the lattice of all equivalence relations on X. One can show that the set Sub(G) of all subgroups of a group G forms a lattice in which H \lor K = <H \lor K> and H \land K = H \cap K for each pair of elements H, K of Sub(G). We call Sub(G), the lattice of subgroups. Birkhoff, G. (1967) proved that every lattice of all equivalence relations on a set X is isomorphic to the lattice Sub(G) of a group G. These results answered a well-known open question that for each lattice L whether there exists a group G such that L can be embedded into Sub(G).

A lattice **L** is said to be *distributive* if it satisfies the distributive law; that is, $(a \land b) \lor (a \land c) = a \land (b \lor c)$ for all a,b,c \in L. Zembery, I. (1973) answered

the open question in a special class of lattices by proving that every finite distributive lattice can be embedded into Sub(G) for some abelian group G. Further, Gratzer, G.(1978) has characterized that G is a finite cyclic group if and only if Sub(G) is a finite distributive lattice; and he also proved that Sub(G) of a finite cyclic group G is isomorphic to a product of finite chains. We can conclude that for each finite distributive lattice L there exists a finite cyclic group G such that L can be embedded into Sub(G). A lattice L is said to be *modular* if it satisfies the modular law; that is, a $\geq c$ implies that a $\wedge (b \lor c) = (a \land b) \lor c$ for all $a,b,c \in L$. It is well-known that if L is distributive then L is modular. Let $m \ge 3$ be a positive integer and let M_m be the set $\{0, 1, a_1, a_2, \dots, a_m\}$ satisfying $0 \leq x \leq 1$ for all $x \in M_m$ and has no other comparabilities. It is obvious that M_m is a finite modular lattice which is not distributive for each m \geq 3. It is also proved by Fraleigh, J. B. (1982) that if G is a group whose Sub(G) is isomorphic to M_m for some $m \ge 3$ then G is not cyclic. It is known that if G is an abelian group then Sub(G) is modular; but the converse is not always true; for instance, $Sub(D_3)$ the set of all subgroups of the dihedral group D_3 is isomorphic to M₄. Ratanaprasert, C. and Chantasartrassmee, A. (2004) have characterized all groups G whose Sub(G) is isomorphic to M_m for some $m \ge 3$. We proved the following theorems.

Theorem 1.1 : Let $m \ge 3$ be a positive integer. Then there is a group G whose Sub(G) is isomorphic to M_m if and only if m = p+1 for some prime p.

Theorem 1.2 : Let G be a group. Then Sub(G) is isomorphic to M_3 if and only if G is isomorphic to $Z_2 \times Z_2$.

Theorem 1.3 : Let G be a group and p be a prime number. Then Sub(G) is isomorphic to M_{p+1} if and only if either G is isomorphic to $Z_p \times Z_p$ or G is a non-abelian group of order pq, where q is a prime number with q divides p–1, generated by elements c, d such that $c^p = d^q = e$, where e denotes the identity of G and dc = c^sd where s is not congruence to 1 modulo p and s^q = 1 (mod p).

Corollary 1.4 : Let G be a non-abelian group whose Sub(G) is isomorphic to M_{p+1} for some prime p. Then (i) p is an odd prime and (ii) G is of order pq where q is a prime number with q divides p–1 and G contains exactly one subgroup of order p and p subgroups of order q.

Groups whose lattices of subgroups are n-M₃ chains

By the Structure Theorems for Finite Abelian Groups and Theorem 1.2, we look for the diagram of the lattice Sub($Z_{2^2} \times Z_2$) of all subgroups of the abelian p-group $Z_{2^2} \times Z_2$ where $Z_{2^2} := \{0, 1, 2, 3\}$ be the (additive) group of integers modulo 4. One can see that all subgroups of the direct product $Z_{2^2} \times Z_2 = \{(0,0), (0,1), (1,0), (1,1), (2,0), (2,1), (3,0), (3,1)\}$ are $a_{03}:= \{(0,0)\} = \langle (0,0) \rangle, a_{11}:= \{(0,0), (0,1)\} = \langle (0,1) \rangle, a_{12}:= \{(0,0), (2,1)\} = \langle (2,1) \rangle, a_{13}:= \{(0,0), (2,0)\} = \langle (2,0) \rangle, a_{21}:= \{(0,0), (0,1), (2,0), (2,1)\} = \langle (0,1), (2,0) \rangle, a_{22}:= \{(0,0), (1,1), (2,0), (3,1)\} = \langle (1,1) \rangle, a_{23}:= \{(0,0), (1,1), (2,0), (3,1)\} = \langle (1,0) \rangle, a_{22}:= \{(1,0), (0,1) \rangle$; and the diagram of the lattice Sub($Z_{2^2} \times Z_2$) is shown in Figure 1(a). For general case, we have the following proposition.

Proposition 2.1: For each integer n ≥2, all subgroups of $Z_{2^n} \times Z_2$ are (a) <(1,0), (0,1)>, (b) <(1,0)>, (c) <(1,1)>, (d) <(2,0), (0,1) > or (e) a subgroup of <(2,0), (0,1)>.

Proof: Let T be a subgroup of $Z_{2^n} \times Z_2$ and for $i \in \{1,2\}$ let p_i be the projection maps of $Z_{2^n} \times Z_2$ on Z_{2^n} and Z_2 , respectively. Then each p_i for $i \in \{1,2\}$ is a homomorphism; hence, $p_1(T)$ and $p_2(T)$ are

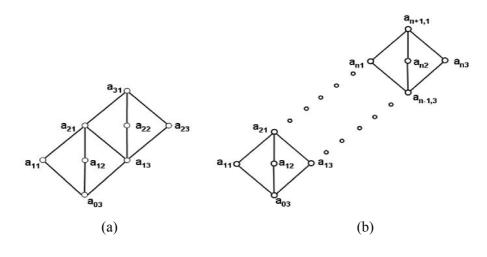


Figure 1

subgroups of Z_{2^n} and Z_2 , respectively. If $|T| = 2^{n+1}$ then T = $Z_{2^n} \times Z_2 = <(1,0), (0,1)>$. Now, we consider the case $|T| = 2^n$. If $p_2(T) = \{0\}$ then $p_1(T) = Z_{2^n}$; hence, $T = Z_{2^n} \times \{0\} = <(1,0)>$. We assume that $p_2(T)$ = {0,1} = Z_2 . If $1 \in p_1(T)$ then (1,1) $\in T$; so, T is a cyclic subgroup <(1,1)> since the order of (1,1) is 2^n = |T|. But, if $1 \notin p_1(T)$ then $p_1(T)$ is a subgroup of <2>= {2a | a $\in \mathbb{Z}_{2^n}$ } since every odd integer in \mathbb{Z}_{2^n} is its generator. Now, $p_1(T) = \langle 2 \rangle$ and $p_2(T) = \langle 1 \rangle$ imply that (2,0) and (0,1) are in T; so, <(2,0), (0,1)> is a subgroup of T. Since each element of <(2,0),(0,1)> is a linear combination of the form s(2,0) + t(0,1) where $1 \leq s \leq 2^{n-1}$ and $1 \leq t \leq 2$, the subgroup $\langle (2,0), (0,1) \rangle$ contains $2(2^{n-1})=2^n$ distinct elements. So, $|T|=2^n$ $= |\langle (2,0), (0,1) \rangle|$. Therefore, T = $\langle (2,0), (0,1) \rangle$. Finally, if $|T| < 2^n$ then $p_1(T)$ is a subgroup of <2>since $p_1(T)$ = implies that $T = Z_{2^n} \times \{0\}$ or T = $Z_{2^n} \times Z_2$ in which cases imply $|T| = 2^n > |T|$, a contradiction. Therefore, T is a subgroup of < (2,0), (0,1)>.

We will generalize the lattice in Figure 1(b) in the following proposition.

 $\begin{array}{l} \textbf{Proposition 2.2}: \text{Let n be a positive integer and} \\ \text{let} \leqslant {}^{*} \text{ be the usual order on the set } \textbf{Z}^{+} \cup \{0\} \text{ of all} \\ \text{nonnegative integers. If } L := \big\{a_{ij} \, \big| \, 1 \leqslant {}^{*} i \leqslant {}^{*} n \text{ and } 1 \\ \leqslant {}^{*} j \leqslant {}^{*} 3 \big\} \cup \big\{a_{03}, a_{(n+1)1}\big\} \text{ and } {\leqslant} \textbf{L} \times L \text{ is defined} \end{array}$

by $a_{v3} \leq a_{ij} \leq a_{ij} \leq a_{u1}$ for all $0 \leq v < i < u \leq v$ n+1 and all $1 \leq i \leq x$ and there are no other comparabilities, then $\mathbf{L} = (\mathbf{L}; \leq)$ is a lattice.

Proof : It is obvious from the definition of \leq that \leq is reflexive. Let x, y \in L satisfy x \leq y and y \leq x. Then there are integers p,q,r,s \in {0,1,2, ..., n+1} such that x = a_{pq} and y = a_{rs} . If q = 3 and since $a_{rs} = y \leq x = a_{pq}$, we have s=3; but p \neq r implies by the definition of \leq that r < *p and p < *r which contradicts to the trichotomy law for \leq *; hence, p = r; and so, x = a_{pq} $a_{rs} = y$. If q = 2 then $a_{p2} = x \leq y = a_{rs}$ implies that s=1 or s=2; but s = 1 implies $a_{r1} = y \leq x = a_{p2}$ which contradicts to the definition of \leq ; so, s=2 = q. Also, p \neq r implies a similar contradiction as above; hence, p = r. Therefore, x= y. If q=1, then $a_{p1} = x \leq y = a_{rs}$ which shows s = 1 and p \leq *r. Now, $a_{r1} = y \leq x = a_{p1}$ implies that r \leq *p. So, p = r. Hence, x = y. In any cases, x = y which shows that \leq is anti-symmetric.

Now, let x,y,z \in L satisfy x \leq y and y \leq z. Then there are integers p,q,r,s,u,v \in {0,1, ..., n+1} such that x = a_{pq} , y = a_{rs} and z = a_{uv} ; so, $a_{pq} \leq a_{rs}$ and $a_{rs} \leq a_{uv}$. Since $a_{pq} = a_{rs}$ or $a_{rs} = a_{uv}$ implies that x \leq z, we consider the case $a_{pq}\neq a_{rs}$ and $a_{rs}\neq a_{uv}$ which implies by the definition of \leq that p < *r and r < *u; so, p < *u. If q = 3 then x = $a_{p3} \leq a_{uv} = z$. And if q=2 then s=1; and so $a_{p3} \leq a_{uv}$ since p < *r implies that v = 1 and p<*u. Finally, if q =1 then s = v = 1; and so, $a_{pq} \leq a_{uv}$ follows from p < * u. Hence, in which cases, x $\leq z$. Therefore, \leq is transitive.

To show that L is a lattice, let $x, y \in L$. If $x \leq y$ or $y \leq x$ then $x \lor y$ and $x \land y$ are in the set $\{x, y\}$. Let x and y be non-comparable. Then there are integers p,q,r,s $\in \{0,1,2, ..., n+1\}$ such that $x = a_{pq}$ and $y = a_{rs}$. We may assume that $p \leq *r$. Then, since a_{pq} and a_{rs} are non-comparable, $1 \leq *p \leq *n$ and $1 \leq *r \leq *n$.

If q = 1 then s $\in \{2,3\}$. Since there are no integers c and d with p-1 <*c <*p and r <*d <* r+1, we have $a_{(p-1)3} \prec a_{p1} = x \leqslant a_{(r+1)1}$ and $a_{(p-1)3} \leqslant a_{rs} = y$ $\prec a_{(r+1)1}$ which shows x $\land y = a_{(p-1)3}$ and x $\lor y = a_{(r+1)1}$. If q = 2 and r = p then $a_{pq} \land a_{ps} = a_{(p-1)3}$ and $a_{pq} \lor a_{ps} = a_{(p+1)1}$; but if q = 2 and p < * r then s $\in \{2,3\}$; so, x $\land y$ and x $\lor y$ will be as in the case q = 1. And if q = 3 then p = r; so, $a_{p3} \leqslant a_{ij}$ for all i with p <* i and for all $1 \leqslant *j \leqslant *3$; so x $\land y$ and x $\lor y$ are as in the case q =2 and r = p.

Definition : The lattice defined as in Proposition 2.2 is called $n-M_3$ chain.

Figure 1(b) shows the diagram of n-M₃ chain for n \ge 1. For a special case, we note that M₃ is 1-M₃ chain and Theorem 1.2 showed that Sub($\mathbb{Z}_2 \times \mathbb{Z}_2$) is isomorphic to 1-M₃ chain (which is M₃). We now prove in general case that Sub($\mathbb{Z}_{2^n} \times \mathbb{Z}_2$) is isomorphic to n-M₃ chain for each positive integer n.

Proposition 2.3 : Sub $(Z_{2^n} \times Z_2)$ is isomorphic to n-M₃ chain for each positive integer n.

Proof : We will prove the proposition by mathematical induction. By Theorem 1.2, $\operatorname{Sub}(\mathbb{Z}_2 \times \mathbb{Z}_2)$ is isomorphic to 1-M₃ chain. We may assume that k is a positive integer such that $\operatorname{Sub}(Z_{2^k} \times Z_2)$ is isomorphic to k-M₃ chain and we will prove the proposition for k+1.

By Proposition 2.1, all the subgroups of $Z_{2^{k+1}} \times Z_2$

are $\overline{1} := \langle (1,0), (0,1) \rangle$, a := $\langle (2,0), (0,1) \rangle$, b := $\langle (1,1) \rangle$, c := $\langle (1,0) \rangle$ or a subgroup of $\langle (2,0), (0,1) \rangle$. Since $\langle (2,0), (0,1) \rangle$ is isomorphic to Sub($Z_{2^k} \times Z_2$), the induction hypothesis implies that Sub($\langle (2,0), (0,1) \rangle$) is isomorphic to k–M₃ chain. It is clear that { $\overline{1}$, a, b, c, d }, where d = $\langle (2,0) \rangle$, is isomorphic to M₃. Hence, Sub($Z_{2^{k+1}} \times Z_2$) is isomorphic to (k+1)–M₃ chain which completes the proof.

Theorem 1.2 and Corollary 1.4(i) also showed that there are no non-abelian groups G such that Sub(G) is isomorphic to n-M₃ chain for all n. We are going to prove in the following theorem that it is also true in the class of n-M₃ chains for all positive integers n.

Theorem 2.4 : Let G be a group and $n \ge 3$ be an integer. Then Sub(G) is an n-M₃ chain if and only if G is isomorphic to $Z_{2^n} \times Z_2$.

Proof : The converse of the theorem follows by Proposition 2.3. Let G be a group whose Sub(G) is an n-M₃ chain. Then G is finite and Theorem1.2 implies that G cannot be non-abelian; and also, the Structure Theorem of Finite Abelian Group implies that G is of the form $Z_{p_1^{t_1}} \times Z_{p_2^{t_2}} \times \ldots \times_{p_r^{t_r}}$ where p_i are primes for $1 \leq i \leq r$. Since an n-M₂ chain is not distributive, G is not a cyclic group; so, there exists a prime factor p of |G| such that $Z_p \times Z_p$ is a subgroup of G. So, Theorem 1.1 told us that $Sub(\mathbf{Z}_{p} \times \mathbf{Z}_{p})$ has at least p+1 atoms. Hence, Cauchy's Theorem implies that all atoms of $Sub(\mathbf{Z}_{p} \times \mathbf{Z}_{p})$ are atoms of G and there are no other prime q differ from p which is a divisor of |G|. So, p+1=3; that is, p=2 is the only prime factor of |G|. If $\mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2$ is a subgroup of G, then one of M₃ in the n-M₃ chain has at least 7 atoms since $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ contains 7 distinct elements of order 2 which contradicts to the form of an n-M₃ chain that each M₃ in the chain has exactly 3 non-comparable elements. So, G is of the form $Z_{2^n} \times Z_{2^m}$ for some positive integers n and m. Suppose that n>1 and m>1. Then a

subgroup $Z_{2^2} \times Z_{2^2}$ of G contains 4 subgroups <(1,0)>, <(0,1)>, <(1,1)> and <(2,0),(0,2)> of order 4 which are non-comparable in Sub($Z_{2^2} \times Z_{2^2}$) and also are in Sub(G). Since G contains only 3 subgroups of the same order which are non-comparable, we get a contradiction. Hence, n =1 or m = 1. Therefore, G is $Z_{2^n} \times Z_2$ for some positive integers n which completes the proof.

Corollary : A lattice **L** is isomorphic to $Sub(Z_{2^n} \times Z_2)$ for some positive integer n if and only if it is an n-M₃ chain.

Groups whose lattices of subgroups are n-M_{p+1} chains for some odd primes p

Let p be an odd prime number and n be a positive integer. We will now give the definition of $n-M_{p+1}$ chains by extending the definition of $n-M_3$ chains as follows.

Let $L := \{a_{ij} \mid 1 \leq * i \leq * n \text{ and } 1 \leq * j \leq * p+1 \}$ $\cup \{a_{0(p+1)}, a_{(n+1)1}\}$ and $\leq L \times L$ be defined by $a_{v(p+1)} \leq a_{ij} \leq a_{ij} \leq a_{u1}$ for all $0 \leq *v \leq * i \leq * u \leq * n+1$ and all $1 \leq * j \leq * p+1$ and there are no other comparabilities. Then one can repeat the proof in Proposition 2.2 with p+1 in place of 3 to conclude that $\mathbf{L} = (L; \leq)$ is a lattice which will be called an $n - M_{p+1}$ chain.

We begin to prove that there is no non-abelian group G whose Sub(G) is isomorphic to an $n-M_{p+1}$ chain if n > 1 and p > 2.

Proposition 3.1 : If G is a group whose Sub(G) is isomorphic to an n-M_{p+1}chain for some odd prime p and some integer n > 1, then G is an abelian group of the form $Z_{p^n} \times Z_p$

Proof : Suppose that there is a non-abelian group G whose Sub(G) is isomorphic to an $n-M_{p+1}$ chain for some integers n > 1 and primes p > 2. Then Theorem 1.3 and Corollary 1.4(i) imply that the subgroup H := a_{21} of G which is the top of the first M_{p+1} of the n-

 M_{p+1} chain must be either $Z_p \times Z_p$ or a non-abelian group of order pq where q is a prime factor of p-1; hence, the prime q must be a factor of |G|. If H = $Z_{p} \times Z_{p}$, Cauchy's Theorem implies that |G| cannot have other prime factors (except p); that is, G is of order p^t for some positive integer t. Since G is nonabelian, G is not $H = Z_p \times Z_p$; so the subgroup a_{31} of G is of order p³. If a_{31} is abelian then a_{31} is $Z_p \times Z_p \times Z_p$ $(a_{31} \text{ cannot be } Z_{p^3} \text{ since the cyclic group cannot have})$ $Z_p \times Z_p$ as its subgroup) and $Sub(Z_p \times Z_p \times Z_p)$ is not 2-M_p chain since it contains p^3-1 (> p+1) distinct elements of order p and each generates a subgroup which is an atom of Sub(G). So, a_{31} is a non-abelian group of order p³ which has elements of order p² and has no elements of order p^3 (: if all elements of a_{31} are of order p or there is an element of a_{31} of order p^3 then either Sub (a_{31}) contains p³-1 atoms which implies that $Sub(a_{31})$ is not a 2-M_pchain or a_{31} is cyclic; in which cases imply a contradiction). Since $Sub(a_{31})$ contain p+1 co-atoms which are subgroups of order p^2 , a_{31} must contain exactly $(p+1)(p^2-1)+1 =$ $p^{3}+p^{2}-p$ elements; so, $p^{3}+p^{2}-p=p^{3}$ which implies that p = 0 or p = 1 which contradicts that p is prime. Therefore, H is a non-abelian group of order pg where q is a prime factor of p-1; and also, p and q are the only prime factors of |G|. If n>1, Sub(a₃₁) contains p cyclic subgroups of order q and only one cyclic subgroup of order p which is Z_p . Since $Sub(Z_p \times Z_p)$ is M_{p+1} , the $a_{1(p+1)}$ in Sub(G) must be Z_p and a_{22} , ..., $a_{2(p+1)}$ are cyclic subgroups Z_{p^2} . So, a_{31} must contain exactly $pq + p(p^2 - p)$ elements. By the First Sylow Theorem and p, q are the only prime factors of |G|, we have $pq + p(p^2-p) = p^t q$ where t > 1 which implies that $p = q(p^{t-2}+...+1)$; hence, p = q or $p = q(p^{t-2}+...$ +1) > p which are impossible in both cases. Therefore, G is an abelian group.

The above argument also shows that there is only

one prime number p which is a factor of |G| and G cannot have $Z_p \times Z_p \times Z_p$ as its subgroup; so, G is of the form $Z_{p^n} \times Z_{p^m}$ for some positive integers n and m. Hence, a similar proof in Theorem 2.4 implies that G is of the form $Z_{p^n} \times Z_p$ which completes the proof.

We can state a similar theorem as Theorem 2.4 as follows.

Theorem 3.2 : Let $n \ge 1$ be an integer and p be a prime number. Then a group G is $Z_{p^n} \times Z_p$ if and only if Sub(G) is an n-M_{p+1} chain.

One can note that both of the class of all $n-M_3$ chains for all integers n and the class of all $n-M_{p+1}$ chains for all integers n > 1 and all odd primes p are subclasses of the class of all modular lattices which are examples answering to the following open problem.

Open Problem : Find a (maximum) subclass M of modular lattices satisfying these 2 conditions :

(i) G is a finite abelian group if and only if Sub(G) is in M, and

(ii) L is a lattice in M if and only if L is isomorphic toSub(G) for some finite abelian group G.

Acknowledgement

The author would like to thank the faculty of science for the financial support.

References

- Birkhoff, G. (1967) *Lattice Theory 3rdedition*. Coll. Publ. XXV, American Mathematical Society, Providence.
- Davey, B.A. and Priestley, H.A. (1990) *Introduction* to Lattices and Order. Cambridge University Press, Cambridge.
- Fraleigh, J. B. (1982) A First Course in Abstract
 Algebra, 3rd edition. Addison-Wesley
 Publishing Company Inc., New York.
- Gratzer, G. (1978) *General Lattice Theory*. Harcourt Brace Jovanovich Publishers, New York.
- Palfy, P. P. (1994) On Feit's examples of intervals in subgroup lattices. *Journal of Algebra* 166 (1): 85-90.
- Ratanaprasert, C. and Chantasartrassmee, A. (2004) Some modular lattices of subgroups, *Contribution in General Algebra*: 73 - 80.
- Whitman, P.M. (1946) Lattices, equivalence relations and subgroups. *Bulletin of the American Mathematical Society* 52: 507-522.
- Zembery, I. (1973) The embedding of some lattices into lattices of all subgroups of free groups. *Mathematic Casopis Sloven Akademie* 23: 103-105.